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Abstract

An escalation method for performing partial fraction expansions is
presented for the case that the complete list of zeros of the denominator
of the proper rational function is known. Expressions for the number of
divisions and multiplications required are developed. The new method re-
quires fewer such arithmetic operations than does the method of Henrici.

A numerical example is provided.
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Introduction. At times it is desired to express a rational function in terms
of partial fractions. After completely factoring the denominator polynomial
into linear factors it is conceptually easy to perform the expansion, but more
efficient methods of carrying out the calculation are always welcome. Particu-
lar attention is directed to the situation where the linear factors of the de-
nominator occur repeated. The partial fraction expansion technique that is
presented here 1is efficient relative to the number of arithmetic
operations required. It compares favorably in this regard with the method of

Henrici [2].

The Escalation Process. Consider the proper rational function

P(x)
Q) (=g ) (-

¢(x) = B (¢))
Eb)
where ga ¢ Cb, A and B are integers greater than zero, and P(x) and Q(x) are

polynomials for which neither Ea nor Eb are zeros. In terms of partial fractions

A-1 C B C
o = § 2 4] By yw 2

i=1 (x-ia) i=1 (x—Cb)

Here and in other parts of this paper a summation is taken to vanish if its
upper 1limit is less than its lower 1limit. A related function s(x) has the

definition and partial fraction expansion given by

A
s(x) - $(x) % eai + g _ cbi

8 =1 eppt 1R ey

A
I *+x( (3)

In going from ¢(x) to s(x) the power of (x-ga) in the denominator was increased
by unity. For this reason those A partial fraction coefficients represented

by 6 are called the native coefficients of (3). All other partial fraction

ai




coefficients of (3) (the ébi and those contained in Q(x» are called alien co-

efificients. What follows will explore and exploit the conjecture that the partial

fraction coefficients (both native and alien) of (3) may be computed from their
counterparts in (2).

First consider the equétion
A- AR
(x-t:a) J‘¢(x) - (x-Ea) ¢ (x) %)
and the (A-2) equations obtained through repeated differentiation with respect to

x (if A= 1, o 2, no differentiation is indicated). When x is set equal to Ea

one finds that

N )

No information is gained concerning 681.
Next consider
B B A
(x-6,) 9(x) = (x~ )" (x~£ ) (x) (6)
and the (B-1) equations obtained through successive differentiation. Upon

setting x-Eb one finds that

bB
- SbB (7N
by~ 220
and
C_-C
eb o _bi “b,i+l , 4= B-1, B-2, +++,2,1 (8)
i Eb_ea

A summary is now presented which makes use of signal flow graphs. The
second row of coefficients in Figure 1 are the native coefficients of (3) while
the first row are the corresponding coefficients of (2). 1In Figure 2 the an-
alogous signal flow graph for the computation of a set of alien coefficients is

presented. The procedure must be repeated for each different set of alien co-

efficients. For brevity take

(9)




Application of Escalation. Consider the proper rational function given by

F(s) = gg:) (10)
where
n-1 i
N(s) = ) bs Q1)
i=0
and
n .
D(s) = ) ais1 (12)
i=0

In (12) an#O ,» but no such analogous restriction is implied in (11), except
that not all the bi are zero. The distinct zeros of D(s) are 01, 02, RN oq

which occur with multiplicities of M, M

10 My LN Mq respectively. The complete
Ca1 Ca2 | C.3 o o o o o C 4 31C A9 Caal
1 N1\ 1o \{
NN N N s S
i
i
eal ea2 ea3 ealo o o o © 9 ea,A—lea,A-l aA |

Figure 1. Formation of native coefficients.
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Figure 2. Formation of alien coefficients.
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list of zeros of D(s) is 81» Bgs vv, s, where it is convenient, but not

necessary, to arrange the list such that the first Ml items all equal 01, the
next M2 items all equal Tys and so forth until the final M.q items all equal aq.
In factored form D(s) becomes

D(e) =a_ B (ss) =a A (s0p) 3 13)

n j=1 B n j=1 h|
The numerator may be written as
n=-1 i
N(s) = 8, + izl By jgl (s-sj) (14)

where the B coefficients are found by Horner's scheme. The details of this cal-
culation will be illustrated later. Upon defining

Gn(s) - anF(s) (15)

one obtains

n-1
By + 121 By 40y (s-sj)
Gn(s) = n
1 (s-sy) (16)
i=1
This may be generalized to
r-1 i
By + jzl By 4 (s-s))
Gr(s) = - y T=1, 2, *°¢, n 17)
n (s-s,)
=1
Algebraic manipulation then reveals
G__,(s) B
- r-l r_l = LN ]
Gr(s) (s-8) + sy * T 1, 2, s N (18)
r T
provided that one defines
Go(s) =0 (19)

All of the Gr(s) defined by (17) are proper rational functions and hence have

partial fraction expansions.
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The immediate aim is to find the partial fraction expansion of Gr(s) from
the corresponding expansion of Gr-l(s)' If this can be accomplished, it can be
repeated n times for r=1, 2, ..., n, ultimately yielding the expansion for Gn(s).
Then owing to (15) the expansion of F(s) is ecasily found.

The process of going from the partial fraction expansion of Gr-l(s) to

that of Gr(s) may be broken into steps. First define
, 0 (20)

and note that if the expansion of Gr-l(s) is known that, with the exception of
A
the first native coefficient, all of the partial fraction coefficients of Gr(S)

may be found by invoking the processes shown in Figures 1 and 2., Then, ac-

Br-l

cording to (18), =5 ) is added to the foregoing result. This addition causes
r

the alteration of only one coefficient in Gr(s) as compared to er(s). That altered
coefficient is the same initial native coefficient for which the method of esca-
lation sheds no light. Thus the escalation policy as given in Figures 1 and

2 is sufficient to transform the coefficients of Gr-l(s) into all but one of the
coefficients of Gr(s). The remaining initial native coefficient of Gr(s) may be
found by using a theorem of Hazony [1].

Hazony's theorem states that the sum of the residues of any rational function
whose denominator degree exceeds its numerator degree by two or more is zero. It
has been noted that Gr-l(s) is a proper rational function. This means that the
denominator degree exceeds the numerator degree by at least unity. Since ar(s)
is formed according to (20) it is clear that er(s) fulfills the requirements of
Hazony's theorem. Thus the sum of the residues of ar(s) is zero, and owing to
(18), the residue sum of Gr(s) is Br—l' Since the unknown initial native coef-
ficient of Gr(s) is a residue, its value may be found by noting that those

partial fraction coefficients of Gr(s) which may be identified as residues

sum to Br-

1'
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Illustration of the Method. For a more concrete presentation, attention is

directed to the finding of the partial fraction expansion of

1+2$+382+483+554+685 (21)
3 4 5

24-1045+18282~1645"+80s *~20s 7+25° :

F(s) =

In a separate (and by no means trivial) calculation it may be found that: 01-1,

M1=3; 02-2, M =2; 0,=3, M3=1. This means that the complete list of the zeros

2 3
of D(s) 1s: 1, 1, 1, 2, 2, 3. The B values may be found by Horner's scheme,
which involves the repeated use of synthetic division using the complete list
of zeros of D(s) as divisors. The initial dividend is the coefficients of N(s)
and the remainders are the B coefficients. The process in abbreviated form is
now shown,

il , s , 4 , 3 , 2 , 1]

6 , 11 , 15 , 18 , 20] 21

6 , 17 , 32 , s0] 70

21 (6 , 23 , 55) 105

2} (6 , 351 125

361 4z

6

It may be verified that

N(s) = 21 + 70(s-1) + 105(s~1)> + 125(s-1)° (22)
+47(8-1)3(s-2) + 6(s-1)3(s-2)?

Next, use is made of the tableau given in Figure 3.




4 v/ /
' f
(r) (r) (r) (r) | g(0) g ()
B B2 513 Bar” 1 Pan N B el
r=1
3 H
r=2 Natlve‘
coef?icients
r=3 |
! |
r=4 Alien coefficients
J 1
—- - i - - — e |
] 1 )
with f = 5 —o Native
r=5 ! 1| 2 coefqicients
i :~
{ |
Alienzcoefficignts Alien C°eff101e“tsmative
r=6 with f = i with f = 1 coeffi-
l 01 93 ! 05703 | cient
-——\/_%___/) i
M1=3 M2=2 M3=1

Figure 3. Tableau for performing escalation.
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Each row of the main body of the tableau contains the partial fraction co-

efficients of Gr(s) defined by

L (r)
q i B
Gr(s) =1 1 -—ii——j s r=1l, 2, **+, n (23)
i=1 j=1 (s-ci)
q
where the Li are the appropriate non-negative integers such that r = X Li’
i=1
where none of the L1 exceeds Mi' The last row of the tableau contains the

coefficients for Gn(s), which are easily converted into the coefficients of
F(s) through division by a .

Those regions in the tableau labled '"native coefficients" are filled in
from the row above by using the process shown in Figure 1 and by demanding that
the row sum of those coefficients that are identified as residues (they bear
check marks) sum to give Br—l' The "alien coefficients" are filled in from the
row above by using the procedure given in Figure 2. The calculation progresses

from the top row to the bottom row.

Omitting the details of the calculation, the entries in the tableau are:

21 21
70 21 70

105 70 21 105
-196 -91 -21 321 125
308 112 21 -261 321 47
- 2 -2 ~60 -321 s 6

Division of the last row coefficients by an(=2) gives the partial fraction ex-

pansion of F(s).

_ 77 _ 285 21
e 5 A
F(s) (o-1) + (3_1)2 + (5_1)3
321 2005
-30 2 16
‘oot o2 (&3 (20

TRREY N
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Operations count. In order to cumpare the efficiency of a given method it

is useful to have expressions for the number of multiplications and divisions
involved, assuming that additions and subtractions are less trouble-
some. Let m (<n) be the degree of the numerator. In order to find the B co-
cefficients iﬂléﬂill multiplications are required when Horner's scheme is used.
Referring to Figure 3 it is seen that the native coefficients do not require any
multiplications or divisions. This assumes that the multiplications by unity
indicated in Figure 1 are too trivial to be counted. Each alien coefficient

could be computed with only one division. This assumes that one could divide

by (0,-0,) rather than muliiplying by L as indicated in Figure 2.
172 (01—02)

2
There are %r - % alien coefficients and hence that many divisions, where
I .
S=M +M + + Mq (25)

Finally, there are n divisions by a » although a frequently equals unity. The

sum of all the above operations is

(n) (n-1)
2

The last term may range from zero when m = 0, up to whenm =n ~ 1,

Hence the operations count varies from a low value of

2, _s
2 2

to a high value of

n2+

(N1}

-5
2

Henrici [2] gives the operations count for his method as being less than
2n2 + S.
The present author reanalyzed the method and under the assumption that

(n+l) 2 2M1, i=1, 2, **+, q, found that the low value (for m=0) {is

2n2 + n - 28




and the high value (form = n - 1) is

2 1 5
3n° +3n - 35

Suppose each zero were to occur with the same multipllcity M, then

S = nM

A ———

It is now seen that when. n 1is 1large, the operations count for escalation

is less than one half of the coant for Henrici's method.
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